Orthodontic Anchorage: A Systematic Review

Inglass Feldmann; L. Bondemark

Abstract: The aim of this systematic review was to examine, in an evidence-based way, what kind of orthodontic anchorage systems/applications are evaluated and their effectiveness. A literature survey from the Pub Med and Cochrane databases covering the period from January 1966 to December 2004 was performed. Randomized controlled trials (RCT), prospective and retrospective controlled studies, and clinical trials comparing at least two anchorage situations were included. Two reviewers selected and extracted the data independently and also assessed the quality of the retrieved studies. The search strategy resulted in 494 articles, of which 14 met the inclusion criteria. Two main anchorage situations were identified: anchorage of molars during space closure after premolar extractions and anchorage loss in the incisor or premolar region (or both) during molar distalization. Because of contradictory results and the vast heterogeneity in study methods, the scientific evidence was too weak to evaluate anchorage efficiency during space closure. Intraoral molar distalization leads to anchorage loss in various amounts depending on the choice of distalization unit. Most of the studies had serious problems with small sample size, confounding factors, lack of method error analysis, and no blinding in measurements. To obtain reliable scientific evidence, controlled RCT's with sufficient sample sizes are needed to determine which anchorage system is the most effective in the respective anchorage situation. Further studies should also consider patient acceptance and cost analysis as well as implants as anchorage. (Angle Orthod 2006;76:493–501.)

Key Words: Orthodontic anchorage; Systematic review

INTRODUCTION

During orthodontic treatment the teeth are exposed to forces and moments, and these acting forces always generate reciprocal forces of the same magnitude but opposite in direction. To avoid unwanted tooth movements and maintain treatment success, these reciprocal forces must be diverted. Orthodontic anchorage, defined as the ability to resist these unwanted reactive tooth movements, can be provided by other teeth, by the palate, head, or neck, or implants in bone.1–10 To date, several studies have been published concerning different anchorage systems from the aspect of application, function, or effectiveness. However, it can be difficult for the practitioner to interpret the results and evidence presented in these studies because a variety of study designs, sample sizes, and research approaches exists. In view of this, and because evidence-based medicine has grown in importance, a systematic review of the present knowledge seems desirable. Systematic reviews aim to locate, appraise, and synthesize the evidence from scientific clinical studies to provide informative answers to scientific questions by including a comprehensive summary of the available evidence.12 This systematic review was undertaken to answer the following questions.

- What kind of orthodontic anchorage systems/applications are evaluated in an evidence-based manner, and how effective is the anchorage produced?
- Furthermore, a quality analysis of the methodological soundness of the selected studies was performed in this review.
MATERIALS AND METHODS

Search strategy

The strategy for undertaking this systematic review was mainly influenced by the National Health Service, NHS, Center for Reviews and Dissemination. To identify all the studies that examined orthodontic anchorage systems and their effectiveness, a literature survey was done by applying the Medline database (Entrez Pub Med, www.ncbi.nlm.nih.gov) and the Cochrane Collaboration Oral Health Group Database of Clinical Trials (www.cochrane.org). The survey covered the period from January 1966 to December 2004 and used the Mesh term (Medical Subject Heading) “orthodontics” and was crossed with a combination of the following term “anchorage.”

Selection criteria

Human studies written in English were included. Randomized controlled trials (RCT), prospective and retrospective controlled studies, and clinical trials comparing at least two anchorage applications reporting quantitative data on the effects of different anchorage devices were selected. Case series, case reports, abstract papers, review articles, animal and in vitro studies, letters, and papers describing surgical procedures and cleft lip or palate treatment (or both) were not considered. All the exclusion criteria and the number of excluded articles are listed in detail in Table 1. The reference lists of the retrieved articles were also checked for additional studies. Two reviewers (Drs Feldmann and Bondemark) independently assessed all the articles with respect to the inclusion and exclusion criteria, and the Kappa score measuring the level of agreement was 0.94 (very good). Any interexaminer conflicts were resolved by discussion to reach consensus.

Data collection and analysis

Data were extracted on the following items: author, year of publication, study design, material, sex and age, treatment time, anchorage unit used, ratio between anchorage loss and active movement. In addition, to document the methodological soundness of each article, a quality evaluation modified by the methods described by Antczak et al and Jadad et al was performed with respect to preestablished characteristics. The following eight variables were evaluated: study design (RCT = 3 points; prospective study = 1 point; retrospective study = 0 point); adequate sample size = 1 point; adequate selection description = 1 point; valid measurement methods = 1 point; use of method error analysis = 1 point; blinding in measurement = 1 point; adequate statistics provided = 1 point; confounders included in analysis = 1 point. In sum, of the eight variables, a study could maximally score 10 points and a study was categorized as low (0–5 points), medium (6–8 points), or high (9 or 10 points).

The data extraction and quality scoring from each article were assessed independently by two evaluators (Drs Feldmann and Bondemark) and without blinding. Interexaminer conflicts were resolved by discussion of each article to reach a consensus. The Kappa scores measuring levels of agreement between the two reviewers are shown in Table 2.

RESULTS

The search strategy resulted in 494 articles. All these articles were analyzed according to the inclu-
sion/exclusion criteria, and 14 articles16–29 were qualified for the final analysis. The reasons for exclusion and the number of excluded articles are listed in Table 1. The excluded articles also contained 149 studies concerning different types of implants used to produce skeletal anchorage. However, because the implant articles were technical presentations, or case reports (or both), or small case-series, they did not qualify for the analysis. The two main anchorage situations found were anchorage of molars during space closure after premolar extractions and anchorage in the incisor and premolar region during distal movement of molars.

The effectiveness of anchorage of molars during space closure

Summarized data of the seven studies are listed in Table 3. Two studies were RCT,24,29 one a prospective split-mouth randomization study,19 one a prospective split-mouth comparative study,18 and three were retrospective comparative studies.16,17,25 Various techniques and auxiliary holding appliances were used for either active movement or anchorage (Table 3).

Using RCT methodology, Usmani et al24 showed no difference in anchorage loss of molars during leveling in the upper jaw with or without laceback ligatures. Irvine et al,29 on the other hand, demonstrated a significant larger anchorage loss when laceback ligatures were used for leveling in the lower jaw.

In a split-mouth randomized study, Lotzof et al19 compared two bracket systems (Tip-Edge and A-Company straight wire) and found no significant difference between the two systems. Baker et al16 found significantly less anchorage loss with an edgewise technique using an auxiliary holding appliance compared with the Begg technique used with the differential force concept. However, according to the ratio anchorage loss/active movement, the difference between the groups was small. Hart et al17 demonstrated possibilities to alter anchorage control with a differential moment technique according to the type of malocclusion and degree of crowding. They found that anchorage loss was significantly lower in cases with maximum anchorage need.

Dincer and Iscan18 focused on space closure using a Gjessing retractor vs a reverse closing loop and found that the Gjessing retractor produced significantly less anchorage loss and also a shorter treatment time.

Geron et al25 examined the relative contribution of five different factors to anchorage loss: extraction site (first vs second premolar), mechanics (labial vs lingual), age (growing vs nongrowing), crowding, and overjet. The authors concluded that anchorage loss is a multifactorial response where mechanics and crowding are considered to be primary factors. Significant less anchorage loss was found with the lingual appliance compared with labial appliances, and the initial crowding was inversely correlated to anchorage loss. Because active movement was not declared, the ratio anchorage loss/active movement was not possible to calculate.

The effectiveness of anchorage during distal movement of molars

The summarized data of the seven studies are listed in Table 4. The primary concern in all these studies was to demonstrate distal molar movement and secondarily to show anchorage loss. One study was an RCT,23 two studies were prospective comparative studies,22,26 one was a retrospective controlled study,20 and three were retrospective comparative studies.21,27,28

In one study,27 molar distalization was performed in the mandible, whereas in all other studies it was in the maxilla.

Mostly a Nance or a modified Nance appliance served as an anchorage unit during the intraoral distalization procedure, and different active units were used for molar movements (Table 4). The anchorage loss measured at the incisors or premolars varied from 0.2 to 2.2 mm, and the ratio anchorage loss/distal molar movement ranged from 0.2 to 0.8 mm.

Quality of the studies

A quality analysis of the 14 studies involved is summarized in Table 5. The research quality and methodological soundness were high in two studies,24,29 medium in three studies,20,21,23 and low in nine studies.16–19,22,25–28 The most obvious shortcomings were retrospective study design with inadequate selection description and small sample sizes implying low power.

In all studies, the methods used to detect and analyze the anchorage loss and active tooth movements were valid and generally well known. However, nine studies16,19,22–28 did not include a method error analysis, and only three21,23,24 studies used blinding in measurements. Moreover, three studies16,17,25 did not consider the risk for confounding factors (Table 5).

A majority of the studies used adequate statistical methods, but in one study,21 nonparametric tests were used on interval level data. The choice of statistical methods was generally not explained.

DISCUSSION

Initially, three main anchorage situations were identified (1) anchorage of molars during space closure after premolar extractions, (2) anchorage loss in
TABLE 3. Summarized Data of Seven Studies Concerning Anchorage Loss During Space Closure After Premolar Extraction

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Study Design</th>
<th>Material Size, Sex, Age</th>
<th>Treatment Time</th>
<th>Active Unit/Anchorage Unit</th>
<th>Outcome Measurements</th>
<th>Ratio (Anchorage Loss/Active Movement)</th>
<th>Authors Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker (1972)</td>
<td>Retrospective comparative</td>
<td>Sex and age unknown I: 50 individuals, Edgewise technique II: 50 individuals, Begg technique</td>
<td>Unknown</td>
<td>Active unit: Not specified in detail Anchorage: I: Auxiliary holding appliance II: Differential force concept</td>
<td>Cephalometric analysis of upper molar and incisor position before and after treatment</td>
<td>I: 0.33 (1.5/4.5 mm) II: 0.38 (2.7/7.1 mm)</td>
<td>Significantly less anchorage loss with edgewise technique using auxiliary holding appliances</td>
</tr>
<tr>
<td>Hart et al (1992)</td>
<td>Retrospective comparative</td>
<td>17 females (10.5–41.4 y) and 13 male (8.4–15.0 y) I: 10 individuals Angle Class I, maximum anchorage need IB: 7 individuals Angle Class I, moderate/minimum anchorage need II: 8 individuals Angle Class II, maximum anchorage need IIB: 5 individuals, Angle Class II, moderate/minimum anchorage need</td>
<td>1.6–7.7 y</td>
<td>Active unit: Space-closure with power chain Anchorage: Differential moment technique</td>
<td>Cephalometric analysis of upper molar and incisor position before and after treatment</td>
<td>IA: 0.11 (0.8/5.4 mm) IB: 1.71 (3.25/1.9 mm) IIA: 0.04 (0.28/6.8 mm) IIB: 0.41 (2.3/5.6 mm)</td>
<td>Differential moment concept as anchorage can achieve different control according to type of malocclusion and degree of crowding.</td>
</tr>
<tr>
<td>Dincer and Iscan (1994)</td>
<td>Prospective comparative “split mouth”</td>
<td>Sex unknown I: 12 individuals with upper canine retraction (11.8–19.8 y) II: 7.8 mo III: 6.3 mo IV: 7.8 mo V: 6.0 mo</td>
<td>I: 7.8 mo II: 6.3 mo III: 7.8 mo IV: 6.0 mo</td>
<td>Active unit: I, III: Reverse closing loop II, IV: Gjessing retraction arch Anchorage: No auxiliary anchorage unit present</td>
<td>Cephalometric analysis of molar and canine position before and after canine retraction</td>
<td>I: 0.63 (2.5/4.0 mm) II: 0.34 (1.6/4.7 mm) III: 0.48 (1.3/2.7 mm) IV: 0.32 (1.3/4.1 mm)</td>
<td>Significantly less anchorage loss and treatment time with the Gjessing retractor</td>
</tr>
<tr>
<td>Lotzof et al (1996)</td>
<td>Prospective “Split mouth randomization”</td>
<td>Seven females 13 y Five males 14 y I: 12 individuals Tip-Edge brackets IIB: 12 individuals A-company straight wire brackets</td>
<td>I: 10.7 wk II: 11.7 wk</td>
<td>Active unit: Canine retraction with elastic chains Anchorage: No auxiliary anchorage unit present</td>
<td>Analysis of upper molar and canine position measured on study casts before and after canine retraction</td>
<td>I: 0.30 (1.7/5.7 mm) II: 0.41 (2.3/5.6 mm)</td>
<td>No significant difference in anchorage loss between the two types of bracket systems</td>
</tr>
<tr>
<td>Usmani et al (2002)</td>
<td>Randomized controlled clinical trial</td>
<td>13 males and 22 females (13.7 y ± 1.8) I: 16 individuals II: 19 individuals</td>
<td>Unknown</td>
<td>Active unit: I: Levelling with laceback ligatures II: Levelling without laceback ligatures</td>
<td>Analysis of upper molar and incisor position measured on study casts before and after levelling</td>
<td>I: 0.98 (0.49/0.5 mm) II: −1.38 (0.5/−0.36 mm)</td>
<td>No significant difference in anchorage loss with or without lacebacks</td>
</tr>
</tbody>
</table>
TABLE 3. Continued

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Study Design</th>
<th>Material Size, Sex, Age</th>
<th>Treatment Time</th>
<th>Active Unit/Anchorage Unit</th>
<th>Outcome Measurements</th>
<th>Ratio (Anchorage Loss/Active Movement)</th>
<th>Authors Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geron et al (2003)</td>
<td>Retrospective comparative</td>
<td>I: 12 individuals (24.8 y ± 5.6) Nongrowing subjects, maxillary first premolar extraction, lingual appliance</td>
<td>Unknown</td>
<td>Active unit: I, II: Space closure with elastic chains III, IV: Space closure with sliding mechanics and Bull-loops Anchorage: I, II: Class II elastics and bonding of second molars III, IV: Headgear and Class II elastics</td>
<td>Analysis of upper molar position from measurements on cephalograms before and after treatment</td>
<td>Active movement not declared Anchorage loss: I = 1.8 mm II = 2.4 mm III = 3.0 mm IV = 3.5 mm</td>
<td>Significantly less anchorage loss with the lingual appliance. Initial crowding was indirect correlated to anchorage loss</td>
</tr>
<tr>
<td>Irvine et al (2004)</td>
<td>Randomized controlled clinical trial</td>
<td>62 individuals 13.7 y randomized into two groups I: 18 females, 12 males II: 18 females, 14 males</td>
<td>I, II: 6 mo</td>
<td>Active unit: I: Levelling with laceback ligature II: Levelling without laceback ligature Anchorage: I, II: No auxiliary anchorage unit present</td>
<td>Cephalometric analysis of molar and incisor position before and after leveling</td>
<td>I: 1.41 (0.75/0.53 mm) II: −0.18 (−0.08/0.44 mm)</td>
<td>Significantly larger anchorage loss with lacebacks</td>
</tr>
</tbody>
</table>

the incisor or premolar region (or both) during distal movement of molars, and (3) appliances that used implants, miniscrews, or similar techniques to produce skeletal anchorage. However, only case reports and small case series, albeit with promising results, were found regarding skeletal anchorage. It is well known that case series and case reports give very low scientific evidence, and this is the reason why these studies were excluded in this systematic review. Moreover, a considerable number of in vitro and animal studies were found. Also, these studies were excluded because it is difficult and often not possible to extrapolate the result of animal and in vitro studies to humans.

The kappa scores measuring levels of agreement between the two reviewers in assessing data extraction and quality scores of the included articles were in the range of good to very good, and thus indicated that the results were reliable.

The effectiveness of anchorage of molars during space closure

The seven studies$^{16–19,24,25,29}$ showed a vast heterogeneity, which means that it was difficult to combine data and draw any consistent conclusions from these studies. For example, two RCT studies24,29 examined anchorage loss with or without laceback ligatures but the results were contradictory, i.e., no significant difference in anchorage loss with or without laceback ligatures29 vs less anchorage loss without ligatures. 29 Conceivable explanations for the difference in results were forces on different anchorage teeth (maxillary vs mandibular molars), sample size discrepancy, and different
TABLE 4. Summarized Data of Seven Studies Concerning Anchorage Loss During Molar Distalization

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Study Design</th>
<th>Material Size, Sex, Age</th>
<th>Treatment Time/Observation Time</th>
<th>Distalizing Unit/Anchorage</th>
<th>Outcome Measurements</th>
<th>Ratio</th>
<th>Authors Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferro et al (2000)</td>
<td>Retrospective controlled clinical trial</td>
<td>I: 43 females, 67 males 10 y II: 52 females, 48 males 10 y</td>
<td>I: 12 mo (6–18) II: 13 mo</td>
<td>I: Cetlin plate and cervical headgear/Cetlin plate II: Untreated control group</td>
<td>Cephalometric analysis of upper incisor and first molar position</td>
<td>I: 1.02 (2.3/2.2 mm) II: –1.09 (1.5/–1.4 mm)</td>
<td>The Cetlin method is reliable for molar distalization but 81% of the cases show anchorage loss</td>
</tr>
<tr>
<td>Bondemark (2000)</td>
<td>Retrospective comparative</td>
<td>I: 21 females 14.4 y II: 21 females 13.9 y</td>
<td>I: 6.5 mo II: 5.8 mo</td>
<td>I: NiTi-coils/Nance appliance II: Magnets/Nance appliance</td>
<td>Cephalometric analysis of upper incisor and first molar position</td>
<td>I: 0.83 (1.0/2.9 mm) II: 0.40 (1.1/2.8 mm)</td>
<td>No significant difference in anchorage loss between the two groups</td>
</tr>
<tr>
<td>Kinzinger et al (2000)</td>
<td>Prospective comparative</td>
<td>29 females and 21 males 11.2 y: I: 24 individuals with deciduous molars as anchorage II: 26 individuals with premolars as anchorage</td>
<td>I: 23 wk II: 21.9 wk</td>
<td>I, II: Modified pendulum/Nance appliance</td>
<td>Cephalometric analysis of upper incisor and first molar position</td>
<td>I: 0.14 (0.18/1.3 mm) II: 0.15 (0.18/1.17 mm)</td>
<td>No significant difference in anchorage loss when deciduous or permanent premolars served as anchorage for the modified Pendulum</td>
</tr>
<tr>
<td>Paul et al (2002)</td>
<td>Randomized controlled clinical trial</td>
<td>16 females and seven males I: 12 individuals 13.5 y II: 11 individuals 14.8 y</td>
<td>I, II: 6 mo</td>
<td>I: Upper removable appliance II: Jones jig/Nance appliance</td>
<td>Analysis of upper premolar and first molar position measured on study casts</td>
<td>I: 0.28 (1.1/4.0 mm) II: 0.55 (1.6/2.9 mm)</td>
<td>No significant difference in anchorage loss between the two groups</td>
</tr>
<tr>
<td>Kinzinger et al (2003)</td>
<td>Prospective comparative</td>
<td>I: Four females, six males 9.5 y (mixed dentition) II: seven females, three males 12.3 y (permanent dentition)</td>
<td>I, II: 20 wk</td>
<td>I, II: Pendulum in the maxilla and lingual arch in the mandible/ Nance appliance and lingual arch appliance</td>
<td>Cephalometric analysis of incisor and first molar position</td>
<td>I: 0.30 (1.0/3.1 mm) II: 0.31 (1.0/3.2 mm) III: 0.83 (2.2/2.7 mm)</td>
<td>The best time to start therapy with a pendulum appliance is before the eruption of second molars. No significant differences are shown</td>
</tr>
<tr>
<td>Kinzinger et al (2004)</td>
<td>Retrospective comparative</td>
<td>25 females, 11 males 12.4 y We were divided into three groups I: 18 individuals Second molar not erupted II: 15 individuals Second molar erupted III: 3 individuals Third molar gemoctomy completed</td>
<td>I: 18.4 wk II: 25.5 wk III: 24 wk</td>
<td>I: Pendulum/Modified Nance appliance</td>
<td>Cephalometric analysis of upper incisor and first molar position</td>
<td>I: 0.79 (2.6/3.3 mm) II: 0.21 (0.7/3.3 mm) III: 0.21 (0.7/3.3 mm)</td>
<td>Significantly less anchorage loss in group II and III</td>
</tr>
<tr>
<td>Kinzinger et al (2004)</td>
<td>Retrospective comparative</td>
<td>I: seven individuals 14.3 y II: seven individuals 12.3 y III: six individuals 12.2 y</td>
<td>I: 12.5 wk II: 14.5 wk III: 22.6 wk</td>
<td>I: Lingual arch appliance/II: Lingual arch appliance III: Lingual arch with sectional archwire III: Lingual arch with sectional archwire and lip bumper</td>
<td>Analysis of lower incisor and first molar position measured on study casts</td>
<td>I: 0.79 (2.6/3.3 mm) II: 0.21 (0.7/3.3 mm) III: 0.21 (0.7/3.3 mm)</td>
<td>Significantly less anchorage loss in group II and III</td>
</tr>
</tbody>
</table>
TABLE 5. Quality Evaluation of the 14 Involved Studies

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Study Design</th>
<th>Sample Size</th>
<th>Selection Description</th>
<th>Valid Measurement Methods</th>
<th>Method Error Analysis</th>
<th>Blinding in Measurements</th>
<th>Adequate Statistic Provided</th>
<th>Confounding Factors</th>
<th>Judged Quality Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker (1972)</td>
<td>Retrospective comparative</td>
<td>Adequate</td>
<td>Inadequate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Hart et al (1992)</td>
<td>Retrospective comparative</td>
<td>Inadequate</td>
<td>Adequate</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Dincer and Iscan (1994)</td>
<td>Prospective comparative “split mouth”</td>
<td>Inadequate</td>
<td>Partly inadequate</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Low</td>
</tr>
<tr>
<td>Lotzof et al (1996)</td>
<td>Prospective comparative</td>
<td>Inadequate</td>
<td>Adequate</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Low</td>
</tr>
<tr>
<td>Perro et al (2000)</td>
<td>Retrospective controlled</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Medium</td>
</tr>
<tr>
<td>Bondemark (2000)</td>
<td>Retrospective comparative</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Medium</td>
</tr>
<tr>
<td>Kinzinger et al (2000)</td>
<td>Prospective comparative</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Uncertain</td>
<td>No</td>
<td>Low</td>
</tr>
<tr>
<td>Paul et al (2002)</td>
<td>Randomized controlled clinical trial</td>
<td>Inadequate</td>
<td>Partly inadequate</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Medium</td>
</tr>
<tr>
<td>Usmani et al (2002)</td>
<td>Randomized controlled clinical trial</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>High</td>
</tr>
<tr>
<td>Geron et al (2003)</td>
<td>Retrospective comparative</td>
<td>Partly inadequate</td>
<td>Adequate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Kinzinger et al (2003)</td>
<td>Prospective comparative</td>
<td>Inadequate</td>
<td>Partly inadequate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Low</td>
</tr>
<tr>
<td>Kinzinger et al (2004)</td>
<td>Retrospective comparative</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Low</td>
</tr>
<tr>
<td>Kinzinger et al (2004)</td>
<td>Retrospective comparative</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Low</td>
</tr>
<tr>
<td>Irvine et al (2004)</td>
<td>Randomized controlled clinical trial</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>High</td>
</tr>
</tbody>
</table>

Measurement methods. Irvine et al. performed the measurements on lateral cephalograms, whereas Usmani et al. used study casts. It has been claimed that measurements on study casts and cephalograms are not comparable. The five other studies, all had unique questions and aims and although the ratio of anchorage loss and active tooth movement was possible to calculate in four of these studies, the inconsistency in the methods made comparisons invalid. It is obvious that further studies are needed regarding the effectiveness of anchorage as well as which modality is the most effective during space closure.

The effectiveness of anchorage during distal movement of molars

When first maxillary molars are moved distally, different opinions exist concerning the influence of second molars on both the active tooth movement and the
anchorage loss. Several authors have stated that
distal movement of the first maxillary molars is dependent
on the stage of eruption of the second maxillary mo-
lar,30,31 whereas other studies have shown that the
second molars have limited effect.32,33 It can be pointed
out that only five of the seven retrieved articles de-
clared the eruption status of the second molars.

Only one study20 used an untreated control group,
and, during the observation period of 13 months, max-
ilary growth effects with anterior displacement of mo-
lars and incisors were demonstrated. It is important to
recognize that most of the retrieved articles in this re-
view concerned growing patients, which means that
the anchorage can also be influenced by growth ef-
fects. Therefore, it seems important to use matched
control groups when the effectiveness of anchorage is
analyzed.

Quality analysis

Several methods and scales to incorporate quality
into systematic reviews have been proposed14,15,34 and
have since been extensively applied to various RCTs
in medicine. However, many items were clearly not ap-
pllicable, for example, placebo appearance/taste, pa-
tient blinded, or observer blind to treatment. Instead,
the quality of the articles was judged as low, medium,
or high according to a scoring system on the basis of
the characteristics given in Table 5.

Many of the studies had serious defects, and ac-

Quality analysis

Several methods and scales to incorporate quality
into systematic reviews have been proposed14,15,34 and
have since been extensively applied to various RCTs
in medicine. However, many items were clearly not ap-
pllicable, for example, placebo appearance/taste, pa-
tient blinded, or observer blind to treatment. Instead,
the quality of the articles was judged as low, medium,
or high according to a scoring system on the basis of
the characteristics given in Table 5.

Many of the studies had serious defects, and ac-

Quality analysis

Several methods and scales to incorporate quality
into systematic reviews have been proposed14,15,34 and
have since been extensively applied to various RCTs
in medicine. However, many items were clearly not ap-
pllicable, for example, placebo appearance/taste, pa-
tient blinded, or observer blind to treatment. Instead,
the quality of the articles was judged as low, medium,
or high according to a scoring system on the basis of
the characteristics given in Table 5.

Many of the studies had serious defects, and ac-
ting to the criteria used, the majority of the articles
were judged to be of low quality. The most serious
shortcomings were retrospective study design in com-
bination with small sample size and inadequate selec-
tion description. Problems of confounding variables,
lack of method error analysis, and the absence of
blinding in measurements were other examples of
shortcomings. Furthermore, the choice of statistical
methods was not explained.

In all studies, the methods to detect and analyze
anchorage loss were valid and well known. However,
different measurement methods were used to analyze
the anchorage, which caused difficulties in comparing
the results of the studies.

From a methodological point of view, it was notable
that only three of the 14 studies declared the use of
blinding in measurements. It is known that nonran-
nomized trials or RCT without blinding design are
more likely to show the advantage an innovation has
over a standard treatment method.25 This implies that
the measurements can be affected by the researcher.

In one study,22 the statistical methods used were
judged as uncertain, which might have influenced the
outcome reliability of the study.

A randomized clinical trial is our most powerful tool
to evaluate therapy, and the quality of the trial signifi-
cantly affects the validity of the conclusions. Three
RCT studies23,24,29 were identified in this systematic re-
view, and two of them were judged to have high qual-
ity. These two studies24,29 had the same objective,
evaluation of anchorage loss (mesial movement of
molars) with or with out laceback ligatures, but unfor-
unately the findings were conflicting and no conclu-
sions could be drawn.

In the future, there is need for additional, well-con-
trolled RCTs concerning the effectiveness of different
anchorage systems including implant systems and
also for assessing costs and side effects of the inter-
ventions.

CONCLUSIONS

- Two main anchorage situations were identified: (1) anchorage loss of molars during space closure after premolar extractions and (2) anchorage loss in the incisor or premolar region (or both) during distal movement of molars.
- A third anchorage category using different implants was identified, but so far only case reports and small case-series have been published, and these studies were therefore excluded in this systematic review.
- The scientific evidence was too weak to evaluate the efficiency of different anchorage systems during space closure because a vast heterogeneity of the studies existed.
- Intraoral molar distalization leads to anchorage loss in the incisor or premolar region (or both) in various amounts depending on choice of distalization unit.
- Most of the studies have serious problems with small sample size, confounding variables, lack of method error analysis, and no blinding in measurements. No evidence-based conclusions were therefore possible to draw from these studies.
- To obtain reliable scientific evidence, additional RCT’s with sufficient sample size are needed to de-
terminate which anchorage system (including im-
plants) is the most effective. Further studies should
also consider patient acceptance and compliance as
well as cost analysis.

ACKNOWLEDGMENTS

We wish to express our sincere thanks to statistician Hans Högberg for valuable assistance in evaluating the statistical
analysis. This study was supported by grants provided by the
Centre for Research and Development, Uppsala University/
County Council of Gävleborg, Sweden, and the Swedish Dental
Society.

REFERENCES

1. Profitt WR. Biomechanics and mechanics (Section IV). In: Profitt WR, ed. Contemporary Orthodontics. 3rd ed. St Lou-
ORTHODONTIC ANCHORAGE

